Time: 3 hrs

## **CLASS - 12 (MATHEMATICS) - GSEB**

Date: 24.01.2023 **Total Marks: 100** 

## Section A

Choose correct answer from the given options. [Each carries 1 Mark]

[24]

1. 
$$\int_{0}^{100\pi} \sqrt{1 - \cos 2x} \ dx = \dots .$$

- (B)  $200\sqrt{2}$
- (C)  $50\sqrt{2}$
- (D) None of these

$$2. \qquad \int \sqrt{\frac{x}{a^3 - x^3}} \ dx = \dots + c.$$

- (A)  $\sin^{-1}\left(\frac{x}{a}\right)^{\frac{3}{2}}$  (B)  $\frac{3}{2}\sin^{-1}\left(\frac{x}{a}\right)^{\frac{3}{2}}$  (C)  $\frac{2}{3}\sin^{-1}\left(\frac{x}{a}\right)^{\frac{3}{2}}$  (D)  $\frac{2}{3}(a^3-x^3)^{\frac{3}{2}}$

3. 
$$I = \int_0^1 \frac{\sin x}{\sqrt{x}} dx$$
 and  $J = \int_0^1 \frac{\cos x}{\sqrt{x}} dx$  then which of the following statement is true?

- (A)  $I > \frac{2}{3}$  and J > 2 (B)  $I < \frac{2}{3}$  and J < 2 (C)  $I < \frac{2}{3}$  and J > 2 (D)  $I > \frac{2}{3}$  and J < 2

4. 
$$\int \frac{x^3}{x+1} dx = \dots + C$$

(A) 
$$x + \frac{x^2}{2} + \frac{x^3}{3} - \log|1 - x|$$

(B) 
$$x + \frac{x^2}{2} - \frac{x^3}{3} - \log|1 - x|$$

(C) 
$$x - \frac{x^2}{2} - \frac{x^3}{3} - \log|1 + x|$$

(D) 
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \log|1 + x|$$

5. 
$$\int \frac{adx}{b+ce^x} = \dots + c$$

(A) 
$$\frac{a}{b} \log \left( \frac{e^x}{b + ce^x} \right)$$

(B) 
$$\frac{a}{b} \log \left( \frac{b + ce^x}{e^x} \right)$$

(A) 
$$\frac{a}{b} \log \left( \frac{e^x}{b + ce^x} \right)$$
 (B)  $\frac{a}{b} \log \left( \frac{b + ce^x}{e^x} \right)$  (C)  $\frac{b}{a} \log \left( \frac{e^x}{b + ce^x} \right)$  (D)  $\frac{b}{a} \log \left( \frac{b + ce^x}{e^x} \right)$ 

(D) 
$$\frac{b}{a} \log \left( \frac{b + ce^x}{e^x} \right)$$

6. Statement - 1: If 
$$x > 0$$
,  $x \ne 1$  then  $\int \left[ \log_x e - (\log_x e)^2 \right] dx = x \log_x e + c$ 

Statement - 2: 
$$\int e^x [f(x) + f'(x)] dx = e^x f(x) + c \text{ and } e^t = x \Leftrightarrow t = \log x$$

- (A) Statement 1 and 2 are true. Statement 2 is explanation of statement 1.
- (B) Statement 1 and 2 are true. Statement 2 is not explanation of statement 1.
- (C) Statement 1 is true.
- (D) Statement 2 is true. But statement 1 is not true.

7. If 
$$\int f(x)dx = F(x)$$
 then  $\int x^3 f(x^2)dx = ......$ 

(A) 
$$\frac{1}{2} \left[ x^2 \{ F(x) \}^2 - \int \{ F(x) \}^2 dx \right]$$

(B) 
$$\frac{1}{2} \left[ x^2 F(x)^2 - \int F(x^2) d(x^2) \right]$$

(C) 
$$\frac{1}{2} \left[ x^2 \ F(x) - \frac{1}{2} \int \{F(x)\}^2 \ dx \right]$$

(D) None of these

8. Area of the curve bounded by the region 
$$(y - x)^2 = x^3$$
 and the lines  $x = 0$  and  $x = 1$  is ....... sq. units.

|                                               | (A) $\frac{3}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B) $\frac{4}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                 | (C) $\frac{2}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (D) $\frac{1}{5}$                                                                                                                                                                                                                                                    |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.                                            | The area of the region b                                                                                                                                                                                                                                                                                                                                                                                                                                      | ounded by the parabola                                                                                                                                                                                                                                                                                                                                                                                                            | $y^2 = 4ax$ and its latus retu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rn is 24 sq. units. Then                                                                                                                                                                                                                                             |
|                                               | $a = \dots$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |
|                                               | $(A) \pm \frac{3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                         | (B) ± 3                                                                                                                                                                                                                                                                                                                                                                                                                           | $(C) \pm 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (D) 9                                                                                                                                                                                                                                                                |
| 10.                                           | The area of the region bounded by the curves $y = 2^x$ and $y = 2x - x^2$ and $x = 0$ , $x = 2$ is Sq. unit                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |
|                                               | (A) $\frac{4}{3} - \frac{1}{\log 2}$                                                                                                                                                                                                                                                                                                                                                                                                                          | $(B) \ \frac{3}{\log 2} + \frac{4}{3}$                                                                                                                                                                                                                                                                                                                                                                                            | $(C) \frac{4}{\log 2} - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (D) $\frac{3}{\log 2} - \frac{4}{3}$                                                                                                                                                                                                                                 |
| 11.                                           | The solution of the equ                                                                                                                                                                                                                                                                                                                                                                                                                                       | ation $(2y - 1)dx - (2x + 3)$                                                                                                                                                                                                                                                                                                                                                                                                     | 3)dx = 0 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                      |
|                                               | $(A)  \frac{2x-1}{2y+3} = k$                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(B)  \frac{2y+1}{2x-3} = k$                                                                                                                                                                                                                                                                                                                                                                                                      | (C) $\frac{2x+3}{2y-1} = k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (D) $\frac{2x-1}{2y-1} = k$                                                                                                                                                                                                                                          |
| 12.                                           | The solution of different                                                                                                                                                                                                                                                                                                                                                                                                                                     | tial equation $xdy - ydx =$                                                                                                                                                                                                                                                                                                                                                                                                       | 0 represents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |
|                                               | (A) rectangular hyperbol                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                   | (B) parabola whose vertex is at origin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                      |
|                                               | (C) straight line passing                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                   | (D) a circle whose centre is at origin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                      |
| 13.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                   | = $2c(x + \sqrt{c})$ are res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |
|                                               | (A) 1, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B) 1, 1                                                                                                                                                                                                                                                                                                                                                                                                                          | (C) 1, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D) 2, 2 →                                                                                                                                                                                                                                                           |
| 14.                                           | A(1, $-2$ , 4), B(5, $-1$ , 7), C(3, 6, $-2$ ) and D(4, 5, $-1$ ) are given vectors. then the projection of $\stackrel{\frown}{AB}$ is                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne projection of AB on                                                                                                                                                                                                                                               |
|                                               | (A) (1, -1, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B) $\frac{3}{13}(4,1,3)$                                                                                                                                                                                                                                                                                                                                                                                                         | (C) $(2\sqrt{3}, -2\sqrt{3}, 2\sqrt{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D) ( <mark>2, -2, 2)</mark>                                                                                                                                                                                                                                         |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |
| 15.                                           | $\overline{a}, \overline{b}$ and $\overline{c}$ are unit vec                                                                                                                                                                                                                                                                                                                                                                                                  | etors. The value of $ \overline{a}-\overline{b} $                                                                                                                                                                                                                                                                                                                                                                                 | $ \overline{b} ^2 +  \overline{b} - \overline{c} ^2 +  \overline{c} - \overline{a} ^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | is not <mark>expected</mark>                                                                                                                                                                                                                                         |
| 15.                                           | $\overline{a}$ , $\overline{b}$ and $\overline{c}$ are unit vec<br>(A) 4                                                                                                                                                                                                                                                                                                                                                                                      | etors. The value of $ \bar{a} - \bar{b} $<br>(B) 9                                                                                                                                                                                                                                                                                                                                                                                | $ \overline{c} ^2 +  \overline{b} - \overline{c} ^2 +  \overline{c} - \overline{a} ^2$ (C) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | is not <mark>expected</mark>                                                                                                                                                                                                                                         |
| <ul><li>15.</li><li>16.</li></ul>             | (A) 4 $\overline{a} = \hat{i} + \hat{j} + \hat{k},  \overline{b} = \hat{i} + 3$                                                                                                                                                                                                                                                                                                                                                                               | (B) 9 $\hat{j} + 5\hat{k} \text{ and } \overline{c} = 7\hat{i} + 9\hat{j}$                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (D) 6                                                                                                                                                                                                                                                                |
|                                               | (A) 4 $ \bar{a} = \hat{i} + \hat{j} + \hat{k},  \bar{b} = \hat{i} + 3 $ whose diagonals are $\bar{a}$                                                                                                                                                                                                                                                                                                                                                         | (B) 9<br>$\hat{j} + 5\hat{k}$ and $\overline{c} = 7\hat{i} + 9\hat{j} + \overline{b}$ and $\overline{b} + \overline{c}$ is                                                                                                                                                                                                                                                                                                        | (C) 8 + $11\hat{k}$ are vectors. The are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D) 6 ea of the parallelogram                                                                                                                                                                                                                                        |
| 16.                                           | (A) 4 $ \overline{a} = \hat{i} + \hat{j} + \hat{k},  \overline{b} = \hat{i} + 3 $ whose diagonals are $\overline{a} = \hat{a} + 3$                                                                                                                                                                                                                                                                                                                            | (B) 9<br>$\hat{j} + 5\hat{k}$ and $\overline{c} = 7\hat{i} + 9\hat{j} + \overline{b}$ and $\overline{b} + \overline{c}$ is                                                                                                                                                                                                                                                                                                        | (C) 8 + $11\hat{k}$ are vectors. The arc (C) $\frac{\sqrt{6}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (D) $6$ ea of the parallelogram  (D) $\sqrt{6}$                                                                                                                                                                                                                      |
| 16.                                           | (A) 4 $ \overline{a} = \hat{i} + \hat{j} + \hat{k},  \overline{b} = \hat{i} + 3 $ whose diagonals are $\overline{a} = \hat{a} + 3$                                                                                                                                                                                                                                                                                                                            | (B) 9<br>$\hat{j} + 5\hat{k}$ and $\overline{c} = 7\hat{i} + 9\hat{j} + \overline{b}$ and $\overline{b} + \overline{c}$ is                                                                                                                                                                                                                                                                                                        | (C) 8 + $11\hat{k}$ are vectors. The are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D) $6$ ea of the parallelogram  (D) $\sqrt{6}$                                                                                                                                                                                                                      |
| 16.                                           | (A) 4 $ \overline{a} = \hat{i} + \hat{j} + \hat{k},  \overline{b} = \hat{i} + 3 $ whose diagonals are $\overline{a} = \hat{a} + 3$ (A) $4\sqrt{6}$ Vector $\overrightarrow{a} = \hat{i} - \hat{j},  \overrightarrow{b} = \hat{i} + 3$                                                                                                                                                                                                                         | (B) 9<br>$\hat{j} + 5\hat{k}$ and $\bar{c} = 7\hat{i} + 9\hat{j} + 5\hat{k}$ and $\bar{b} + \bar{c}$ is<br>(B) $\frac{1}{2}\sqrt{21}$<br>$\hat{j} + \hat{k}$ . The vector $\hat{c}$ is such that                                                                                                                                                                                                                                  | (C) 8 + $11\hat{k}$ are vectors. The arc (C) $\frac{\sqrt{6}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (D) $6$ ea of the parallelogram  (D) $\sqrt{6}$                                                                                                                                                                                                                      |
| <ul><li>16.</li><li>17.</li></ul>             | (A) 4 $ \overline{a} = \hat{i} + \hat{j} + \hat{k}, \ \overline{b} = \hat{i} + 3 $ whose diagonals are $\overline{a} = \hat{a} + 3$ (A) $4\sqrt{6}$ Vector $\overrightarrow{a} = \hat{i} - \hat{j}, \ \overrightarrow{b} = \hat{i} + 3$ (A) 8                                                                                                                                                                                                                 | (B) 9 $\hat{j} + 5\hat{k} \text{ and } \overline{c} = 7\hat{i} + 9\hat{j} + 6\hat{b} \text{ and } \overline{b} + 6\hat{b} \text{ is}$ (B) $\frac{1}{2}\sqrt{21}$ $\hat{j} + \hat{k} \cdot \text{The vector } c \text{ is such the substitutes}$ (B) $\frac{19}{2}$                                                                                                                                                                | (C) 8 $+ 11\hat{k} \text{ are vectors. The are}$ (C) $\frac{\sqrt{6}}{2}$ that $\overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} = 0$ and $\overrightarrow{a} \cdot \overrightarrow{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D) 6  ea of the parallelogram  (D) $\sqrt{6}$ $\overrightarrow{c} = 4$ then $ \overrightarrow{c} ^2 = \dots$ (D) $\frac{17}{2}$                                                                                                                                     |
| <ul><li>16.</li><li>17.</li></ul>             | (A) 4 $ \overline{a} = \hat{i} + \hat{j} + \hat{k}, \ \overline{b} = \hat{i} + 3 $ whose diagonals are $\overline{a} = \hat{a} + 3$ (A) $4\sqrt{6}$ Vector $\overrightarrow{a} = \hat{i} - \hat{j}, \ \overrightarrow{b} = \hat{i} + 3$ (A) 8                                                                                                                                                                                                                 | (B) 9 $\hat{j} + 5\hat{k} \text{ and } \overline{c} = 7\hat{i} + 9\hat{j} + 6\hat{b} \text{ and } \overline{b} + 6\hat{b} \text{ is}$ (B) $\frac{1}{2}\sqrt{21}$ $\hat{j} + \hat{k} \cdot \text{The vector } c \text{ is such the substitutes}$ (B) $\frac{19}{2}$                                                                                                                                                                | (C) 8 $+ 11\hat{k} \text{ are vectors. The are}$ (C) $\frac{\sqrt{6}}{2}$ $\text{that } \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} = 0 \text{ and } \overrightarrow{a} \cdot (C)$ (C) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (D) 6  ea of the parallelogram  (D) $\sqrt{6}$ $\overrightarrow{c} = 4$ then $ \overrightarrow{c} ^2 = \dots$ (D) $\frac{17}{2}$                                                                                                                                     |
| <ul><li>16.</li><li>17.</li></ul>             | (A) 4 $ \overline{a} = \hat{i} + \hat{j} + \hat{k}, \ \overline{b} = \hat{i} + 3 $ whose diagonals are $\overline{a} = \hat{a} + 3$ (A) $4\sqrt{6}$ Vector $\overrightarrow{a} = \hat{i} - \hat{j}, \ \overrightarrow{b} = \hat{i} + 3$ (A) 8 $ \overrightarrow{a} = \hat{j} - \hat{k} \text{ and } \hat{c} = \hat{i} - 3$ $ \overrightarrow{b} = \dots \dots \dots$                                                                                          | (B) 9 $\hat{j} + 5\hat{k} \text{ and } \overline{c} = 7\hat{i} + 9\hat{j} + 6\hat{k} \text{ and } \overline{b} + 6\hat{k} \text{ is}$ (B) $\frac{1}{2}\sqrt{21}$ $\hat{j} + \hat{k} \cdot \text{The vector } \vec{c} \text{ is such the substitution}$ (B) $\frac{19}{2}$ $\hat{j} - \hat{k} \cdot \text{The vector } \vec{b} \text{ is } \vec{b}$                                                                                | (C) 8 $+ 11\hat{k} \text{ are vectors. The are}$ (C) $\frac{\sqrt{6}}{2}$ $\text{that } \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} = 0 \text{ and } \overrightarrow{a} \cdot (C)$ (C) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (D) 6  ea of the parallelogram  (D) $\sqrt{6}$ $\overrightarrow{c} = 4$ then $ \overrightarrow{c} ^2 = \dots$ (D) $\frac{17}{2}$ 0 and $\overrightarrow{a} \cdot \overrightarrow{b} = 3$ then                                                                        |
| <ul><li>16.</li><li>17.</li><li>18.</li></ul> | (A) 4 $ \overline{a} = \hat{i} + \hat{j} + \hat{k},  \overline{b} = \hat{i} + 3 $ whose diagonals are $\overline{a} = \hat{i} + 3$ (A) $4\sqrt{6}$ Vector $\overrightarrow{a} = \hat{i} - \hat{j},  \overrightarrow{b} = \hat{i} + 3$ (A) 8 $ \overrightarrow{a} = \hat{j} - \hat{k} \text{ and } \hat{c} = \hat{i} - 3$ $ \overrightarrow{b} = \dots $ | (B) 9 $\hat{j} + 5\hat{k} \text{ and } \overline{c} = 7\hat{i} + 9\hat{j} + 6\hat{k} \text{ and } \overline{b} + 6\hat{k} \text{ is}$ (B) $\frac{1}{2}\sqrt{21}$ $\hat{j} + \hat{k} \cdot \text{The vector } \vec{c} \text{ is such the substitution}$ (B) $\frac{19}{2}$ $\hat{j} - \hat{k} \cdot \text{The vector } \vec{b} \text{ is } \vec{b}$ (B) $2\hat{i} - \hat{j} + 2\hat{k}$                                            | (C) 8 $+ 11\hat{k} \text{ are vectors. The are}$ (C) $\frac{\sqrt{6}}{2}$ $+ \frac{1}{2} + 1$ | (D) 6  ea of the parallelogram  (D) $\sqrt{6}$ $\overrightarrow{c} = 4$ then $ \overrightarrow{c} ^2 = \dots$ (D) $\frac{17}{2}$ 0 and $\overrightarrow{a} \cdot \overrightarrow{b} = 3$ then  (D) $\hat{i} + \hat{j} - 2\hat{k}$                                    |
| <ul><li>16.</li><li>17.</li><li>18.</li></ul> | (A) 4 $\overline{a} = \hat{i} + \hat{j} + \hat{k}, \ \overline{b} = \hat{i} + 3$ whose diagonals are $\overline{a}$ .  (A) $4\sqrt{6}$ Vector $\overrightarrow{a} = \hat{i} - \hat{j}, \ \overrightarrow{b} = \hat{i} + 3$ (A) 8 $\overrightarrow{a} = \hat{j} - \hat{k} \text{ and } \widehat{c} = \hat{i} - 3$ $\overrightarrow{b} = \dots $          | (B) 9 $\hat{j} + 5\hat{k} \text{ and } \overline{c} = 7\hat{i} + 9\hat{j} + 6\hat{k} \text{ and } \overline{b} + 6\hat{k} \text{ is}$ (B) $\frac{1}{2}\sqrt{21}$ $\hat{j} + \hat{k} \cdot \text{The vector } c \text{ is such the substitution}$ (B) $\frac{19}{2}$ $\hat{j} - \hat{k} \cdot \text{The vector } b \text{ is } c$ (B) $2\hat{i} - \hat{j} + 2\hat{k}$ $\hat{j} = \frac{z+1}{2}  L_2 : \frac{z-2}{1} = \frac{y}{2}$ | (C) 8 $+ 11\hat{k} \text{ are vectors. The are}$ (C) $\frac{\sqrt{6}}{2}$ that $\overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} = 0$ and $\overrightarrow{a} \cdot (C)$ (C) 9 $\text{such that } \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{c} = (C) \hat{i} - \hat{j} - 2\hat{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D) 6  ea of the parallelogram  (D) $\sqrt{6}$ $\overrightarrow{c} = 4$ then $ \overrightarrow{c} ^2 = \dots$ (D) $\frac{17}{2}$ 0 and $\overrightarrow{a} \cdot \overrightarrow{b} = 3$ then  (D) $\hat{i} + \hat{j} - 2\hat{k}$ ector perpendicular L <sub>1</sub> |

| (A) $\frac{1}{5}\sqrt{1657}$ |
|------------------------------|
|------------------------------|

(B) 
$$\frac{1}{\sqrt{5}}\sqrt{1675}$$
 (C)  $\frac{1}{5}\sqrt{1757}$ 

(C) 
$$\frac{1}{5}\sqrt{1757}$$

(D) 
$$\frac{1}{\sqrt{5}}\sqrt{1667}$$

- If two events A and B are such that P(A') = 0.3, P(B) = 0.5 and  $P(A \cap B) = 0.3$ , then  $P(B \mid A \cup B')$ 21. is ......
  - (A) 0.375
- (B) 0.32

(C) 0.31

- (D) 0.28
- The maximum value of Z = x + 3y subject to the constraints  $2x + y \le 20$ ,  $x + 2y \le 20$ ,  $x \ge 0$ ,  $y \ge 0$ 22. 0 is .....
  - (A) 10

(B) 60

(C) 40

- (D) 30
- The probability that a student is not a swimmer is  $\frac{4}{5}$ . The probability that out of 5 students exactly 23. 4 are swimmers is ......
  - (A)  $\left(\frac{1}{5}\right)^3$
- (B)  $4\left(\frac{1}{5}\right)^4$  (C)  ${}_5C_4\left(\frac{4}{5}\right)^4$  (D)  $\left(\frac{4}{5}\right)^4$
- The mean and standard deviation of a random variable X are given by E(X) = 5 and  $\sigma_x = 3$ 24. respectively, then
  - $E(X^2) = .....$
  - ii)  $E[(3X 2)^2] = \dots$
  - iii)  $V(3 2X) = \dots$ .
  - (A) (i) 34, (ii) 250, (iii) 36

(B) (i) 34, (ii) 370, (iii) 81

(C) (i) 34, (ii) 370, (iii) 36

(D) (i) 34, (ii) 250, (iii) 81

## Section B

Write the answer of the following questions. [Each carries 2 Marks]

[16]

- The two adjacent sides of a parallelogram are  $2\hat{i} 4\hat{j} + 5\hat{k}$  and  $\hat{i} 2\hat{j} 3\hat{k}$ . Find the unit vector 1. parallel to its diagonal. Also, find its area.
- Find the area enclosed by the curve  $y = -x^2$  and the straight line x + y + 2 = 0. 2.
- Two dice are tossed once. If number 4 comes on first dice then find probability of an event that 3. sum of numbers obtain on two dice is 8 or more.
- If the line drawn from the point (-2, -1, -3) meets a plane at right angle at the point (1, -3, 3), then 4. find the equation of the plane.
- Find  $\int x \sin x \cos^2 x \, dx$ 5.
- Find a vector of magnitude 5 units, and parallel to the resultant of the vectors  $\vec{a} = 2 \hat{i} + 3 \hat{j} \hat{k}$  and 6.  $\overrightarrow{b} = \overrightarrow{i} - 2\overrightarrow{i} + \overrightarrow{k}$ .
- Find  $\int \frac{\cos(5x) + \cos(4x)}{1 2\cos(3x)} dx$ 7.
- In answering a question in the multiple choice test, a student either knows the answer or he 8. guesses. Let  $\frac{3}{4}$  be the probability that he knows the answer and  $\frac{1}{4}$  be the probability that he guesses. Assuming that a student who guesses the answer will be correct with probability  $\frac{1}{4}$ . What is the probability that the student knows the answer given that he answered it correctly?

[36]

[24]

9. Find the shortest distance between the lines whose vector equations are

$$\overrightarrow{r} = (\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}) + \lambda (\overrightarrow{i} - 3\overrightarrow{j} + 2\overrightarrow{k}) \text{ and } \overrightarrow{r} = 4\overrightarrow{i} + 5\overrightarrow{j} + 6\overrightarrow{k} + \mu (2\overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}).$$

- 10. If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (-4, 3, -6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.
- 11. One kind of cake requires 200g of flour and 25g of fat, and another kind of cake requires 100g of flour and 50g of fat. Find the maximum number of cakes which can be made from 5kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes.
- 12. Find the foot of perpendicular from the point (0, 2, 3) on the line  $\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3}$ . Also find the length of perpendicular.
- 13. If  $y = e^{a\cos^{-1}x}$  show that  $(1-x^2)\frac{d^2y}{dx^2} x\frac{dy}{dx} a^2y = 0$ . Where  $-1 \le x \le 1$ .
- 14. If  $x\sqrt{1+y} + y\sqrt{1+x} = 0$  for, -1 < x < 1 then prove that,  $\frac{dy}{dx} = \frac{-1}{(1+x)^2}$
- 15. Find the vector equation of the plane passing through the intersection of the planes  $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 6$  and  $\vec{r} \cdot (2\hat{i} + 3\hat{j} + \hat{k}) = -5$  and the point (1, 1, 1).
- 16. If a fair coin is tossed 10 times, find the probability of
  - (a) exactly six heads
  - (b) atleast six heads
  - (c) atmost six heads
- Find the equation of the tangent line to the curve  $y = x^2 2x + 7$  which is parallel to the line 2x y + 9 = 0.
- 18. Find the shortest distance between the lines  $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$  and  $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$ .
- 19. Solve the following linear programming problem graphically:

Minimise Z = 200x + 500y

Subject to the constraints

$$x + 2y \ge 10$$

$$3x + 4y \le 24$$

$$x \ge 0, y \ge 0$$

20. Solve the following linear programming problem graphically.

Maximize Z = 5x + 3y Subject to  $3x + 5y \le 15$ ,  $5x + 2y \le 10$ ,  $x \ge 0$ ,  $y \ge 0$ .

Section D

• Write the answer of the following questions. [Each carries 4 Marks]

21. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is  $\frac{2R}{\sqrt{3}}$ . Also find the maximum volume.

22. Find  $\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} dx$ .

$$(x dy - y dx) y \sin\left(\frac{y}{x}\right) = (y dx + x dy) x \cos\left(\frac{y}{x}\right).$$

24. The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after *t* seconds.

25. Find 
$$\int \frac{5x}{(x+1)(x^2+9)} dx$$

26. Find the particular solution of the differential equation : 
$$\frac{dy}{dx} - \frac{y}{x} + \csc\left(\frac{y}{x}\right) = 0$$
,  $y = 0$  when  $x = 1$ 

