

Class 12 - Chemistry (CBSE)

Date: 14.02.2023

[1]

[1]

[2]

Time Allowed: 3 hours **Maximum Marks: 70**

1. Give an example of solid solution in which the solute is a gas. [1] 2. Mention the factors that affect the rate of a chemical reaction. [1] 3. What are interstitial compounds? Why are such compounds well known for transition metals? [1] Describe the oxidising action of potassium dichromate and write the ionic equations for its reaction with: 4. [1]

- i. iodide
- ii. iron(II) solution and
- iii. H₂S
- What are the different oxidation states exhibited by the lanthanoids? 5. [1]
- 6. Name the halide according to the IUPAC system and classify it as alkyl, allyl, benzyl (primary, secondary, [1] tertiary) vinyl or aryl halide.

(CH₃)₂CHCH(Cl)CH₃

7. Name the halide according to the IUPAC system and classify it as alkyl, allyl, benzyl (primary, secondary, [1] tertiary) vinyl or aryl halide.

CH₃CH₂CH(CH₃)CH(C₂H₅)Cl

8. Write IUPAC name of the compound:

OH

Write IUPAC name of the compound. 9.

> $CH_3 - CH - CH CH_3$ OH

- Define the following terms: 10.
 - i. Mole fraction
 - ii. Molality
 - iii. Molarity
 - iv. Mass percentage.
- 11. Define the term solution. How many types of solutions are formed? Write briefly about each type with an [2]
- Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory. 12. [2]
 - a. $[Fe(CN)_6]^{4-}$
 - b. [FeF₆]³-

c.
$$[Co(C_2O_4)_3]^{3-}$$

d.
$$[CoF_6]^{3-}$$

13. Write the structure of the major organic product of the reaction:

- $CH_3CH_2CH = CH_2 + HBr \xrightarrow{Peroxide}$
- 14. When 3-methylbutan-2-ol is treated with HBr, the following reaction takes place:

[2]

$$CH_3 - CH - CH - CH_3 \stackrel{HBr}{\longrightarrow} CH_3 - CH_3 \stackrel{Br}{\overset{|}{\longrightarrow}} CH_3$$

Give a mechanism for this reaction.

15. Why cannot aromatic primary amines be prepared by Gabriel phthalimide synthesis?

[2]

[3]

- 16. An antifreeze solution is prepared from 222.6 g of ethylene glycol ($C_2H_6O_2$) and 200 g of water. Calculate the molality of the solution. If the density of the solution is 1.072 g mL⁻¹, then what shall be the molarity of the solution?
- 17. Conductivity of 0.00241 M acetic acid is $7.896 \times 10^{-5} \ S \ cm^{-1}$. Calculate its molar conductivity. If $\Lambda^o{}_m$ for acetic acid is 390.5 S cm² mol⁻¹, what is its dissociation constant?
- 18. Predict the products of electrolysis in each of the following:

[3]

- i. An aqueous solution of AgNO₃ with silver electrodes.
- ii. An aqueous solution of AgNO₃ with platinum electrodes.
- iii. A dilute solution of H₂SO₄ with platinum electrodes.
- iv. An aqueous solution of CuCl₂ with platinum electrodes.
- 19. In a reaction between A and B, the initial rate of reaction (r_0) was measured for different initial concentrations of A and B as given below:

A/molL ⁻¹	0.20	0.20	0.40
B/molL ⁻¹	0.30	0.10	0.05
r ₀ /molL ⁻¹ s ⁻¹	5.07×10^{-5}	5.07 × 10 ⁻⁵	1.43 × 10 ⁻⁴

What is the order of the reaction with respect to A and B?

- 20. Predict which of the following will be coloured in aqueous solutions? Ti³⁺, V³⁺, Cu⁺, Sc³⁺, Mn²⁺, Fe³⁺ and Co²⁺ give reason for each.
- 21. Draw all the isomers (geometrical and optical) of :

[3]

- a. $[CoCl_2(en)_2]^+$
- b. [Co(NH₃)Cl(en)₂]²⁺
- c. [Co(NH₃)₂Cl₂(en)]⁺
- 22. Write the structures of the following organic halogen compounds.

[3]

- i. 2-Chloro-3-methylpentane
- ii. p-Bromochlorobenzene
- iii. 1-Chloro-4-ethylcyclohexane
- iv. 2-(2-Chlorophenyl)-1-iodooctane

- v. 2-Bromobutane
- vi. 4-tert-Butyl-3-iodoheptane
- vii. 1-Bromo-4-sec-butyl-2-methylbenzene
- viii. 1,4-Dibromobut-2-ene
- 23. Give plausible explanation for each of the following:

[3]

- i. Why are amines less acidic than alcohols of comparable molecular masses?
- ii. Why do primary amines have higher boiling point than tertiary amines?
- iii. Why are aliphatic amines stronger bases than aromatic amines?
- 24. Predict the products of the following reactions:

[3]

i.

ii.

iii.

iv.

25. In a pseudo-first-order reaction in water, the following results were obtained:

[4]

$\frac{t}{s}$	0	30	60	90
[A] mol - 1	0.55	0.31	0.17	0.085

Calculate the average rate of reaction between the time interval 30 to 60 seconds.

26. Describe the following:

[4]

[4]

[5]

- i. Acetylation
- ii. Cannizzaro reaction
- iii. Cross aldol condensation
- iv. Decarboxylation
- 27. The molar conductivity of 0.025 mol L⁻¹ methanoic acid is 46.15 S cm²mol⁻¹. Calculate the degree of dissociation and dissociation constant. Given λ^0 (H^+) = 349.6 S cm² mol^{-1} and λ^0 (HCOO⁻) = 54.6 S cm²mol⁻¹
- 28. What happens when
 - i. n-butyl chloride is treated with alcoholic KOH,
 - ii. bromobenzene is treated with Mg in the presence of dry ether,
 - iii. chlorobenzene is subjected to hydrolysis,

- iv. ethyl chloride is treated with aqueous KOH,
- v. methyl bromide is treated with sodium in the presence of dry ether,
- vi. methyl chloride is treated with KCN.
- 29. Preparation of ethers by acid dehydration of secondary or tertiary alcohols is not a suitable method. Give reason. [5]

